Glutamate iontophoresis induces long-term potentiation in the absence of evoked presynaptic activity.

نویسندگان

  • R J Cormier
  • M D Mauk
  • P T Kelly
چکیده

Protocols that induce long-term potentiation (LTP) typically involve afferent stimulation. We tested the hypothesis that LTP induction does not require presynaptic activity. The significance of this hypothesis is underscored by results suggesting that LTP expression may involve activity-dependent presynaptic changes. An induction protocol using glutamate iontophoresis was developed that reliably induced LTP in hippocampal slices without afferent stimulation. Iontophoresis LTP was Ca2+ dependent, was blocked by MK-801, and occluded tetanus-induced LTP. Iontophoresis LTP was induced when excitatory postsynaptic potentials were completely blocked by adenosine plus tetrodotoxin. Our results suggest constraints on the involvement of presynaptic mechanisms and putative retrograde messengers in LTP induction and expression; namely, these processes must function without many forms of activity-dependent presynaptic processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P6: Metabotropic Glutamate Receptor-Dependent Role in the Formation of Long-Term Potentiation

Long-term potentiation (LTP) is a reflection of synaptic plasticity that induced by specific patterns of synaptic activity and has an important role in learning and memory. The first clue of the potential role of glutamate receptors in LTP was in 1991 with the observation that the mGluR agonists 1-amino-1, 3-cyclopentanedicarboxylic acid (ACPD), increased LTP. Studies have shown that ACPD induc...

متن کامل

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

Gating and braking of short- and long-term modulatory effects by interactions between colocalized neuromodulators.

Spinal locomotor networks in the lamprey are modulated by tachykinin neuropeptides. A single 10 min application of the tachykinin substance P evokes a short-term ( approximately 1 hr) presynaptic facilitation of glutamate release and the postsynaptic potentiation of NMDA responses. The latter effect induces a long-term (>24 hr) protein synthesis-dependent increase in the frequency of network ac...

متن کامل

Endocannabinoids Induce Lateral Long-Term Potentiation of Transmitter Release by Stimulation of Gliotransmission.

Endocannabinoids (eCBs) play key roles in brain function, acting as modulatory signals in synaptic transmission and plasticity. They are recognized as retrograde messengers that mediate long-term synaptic depression (LTD), but their ability to induce long-term potentiation (LTP) is poorly known. We show that eCBs induce the long-term enhancement of transmitter release at single hippocampal syna...

متن کامل

Glutamate is required for depression but not potentiation of long-term presynaptic function

Hebbian plasticity is thought to require glutamate signalling. We show this is not the case for hippocampal presynaptic long-term potentiation (LTPpre), which is expressed as an increase in transmitter release probability (Pr). We find that LTPpre can be induced by pairing pre- and postsynaptic spiking in the absence of glutamate signalling. LTPpre induction involves a non-canonical mechanism o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 10 5  شماره 

صفحات  -

تاریخ انتشار 1993